Code: ME6T5

III B.Tech-II Semester-Regular/Supplementary Examinations-March 2019
INDUSTRIAL ENGINEERING \& MANAGEMENT (MECHANICAL ENGINEERING)
Tables/codes: Normal distribution tables should be supplied. Duration: 3 hours Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks

$$
11 \mathrm{x} 2=22 \mathrm{M}
$$

1. Differentiate between:
a) Administration, Organization \& Management.
b) Positive and Negative Motivation.
c) Line and Staff Organizations.
d) Autocratic Vs. Democratic Leadership styles.
e) Chance and Assignable causes.
f) Defect and Defective.
g) Two handed process chart and SIMO chart.
h) Normal time and Standard time of a job.
i) CPM and PERT.
j) Optimistic and Pessimistic time of an activity.
k) Total float and free float.

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) State and explain the functions of management. 8 M
b) Explain briefly about Maslow's hierarchy of human needs.

8 M
3. a) Compare rural and urban sites with respect to a plant location.
b) What are the different types of plant lay outs? Discuss their merits and demerits?
4. a) Illustrate Single and Double Sampling attribute plans with neat schematic diagrams. What are their advantages and disadvantages?
b) The number of customer complaints received daily by an organization is given below. Does it mean that the number of complaints is under control? Establish a control scheme for future.

8 M

Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
No. of complaints	2	3	0	1	9	2	0	0	4	2	0	7	0	2	4

5. a) What is method study? Explain the basic steps of method study.
b) What is meant by standard time of a job? What are different allowances used in calculating standard time?

8 M
6. Draw the PERT network for a project consisting of 7 tasks (A to G) in which the following precedence relationship must hold ($\mathrm{X}<\mathrm{Y}$ means X must be completed before Y can start).

$$
\begin{aligned}
& \mathrm{A}<\mathrm{B} ; \quad \mathrm{A}<\mathrm{C} ; \quad \mathrm{B}<\mathrm{D} ; \quad \mathrm{B}<\mathrm{E} ; \quad \mathrm{C}<\mathrm{F} ; \quad \mathrm{D}<\mathrm{G} ; \\
& \mathrm{E}<\mathrm{F} ; \quad \mathrm{F}<\mathrm{G}
\end{aligned}
$$

Task	A	B	C	D	E	F	G
Expected Time (hrs.)	10	6	7	4	4	6	6
Standard deviation (hrs.)	2	$2 / 3$	$1 / 3$	$2 / 3$	$2 / 3$	$2 / 3$	$2 / 3$

Determine the critical path, expected minimum duration and variance of the project. Also find the probability that the project is completed 2 hours earlier than expected time.

